Involvement of brain-derived neurotrophic factor in time-dependent neurodegeneration in the murine superior colliculus after intravitreal injection of N-methyl-D-aspartate
نویسندگان
چکیده
PURPOSE To clarify the effects on the visual pathway that occur following retinal damage, we examined the morphological alterations present in the superior colliculus (SC) after N-methyl-D-aspartate (NMDA)-induced retinal damage in mice. METHODS NMDA was injected into the vitreous body of the left eye in mice to induce retinal damage. The time-dependent neuronal degeneration in the SC was assessed using immunohistochemistry. RESULTS The number of neuronal nuclear specific protein (NeuN)-immunostained neurons showed a significant decrease in the contralateral SC at both 90 and 180 days after intravitreal NMDA injection. In contrast, the ipsilateral SC displayed no significant change in the number of NeuN-positive cells. An increase in glial fibrillary acid protein (GFAP) immunoreactivity was observed in the contralateral SC at 7, 30, and 90 days after NMDA injection and in the ipsilateral SC at 7 days, while brain-derived neurotrophic factor (BDNF) expression was increased in the contralateral SC at 30 and 90 days. In the contralateral SC, some GFAP-positive astroglial cells also exhibited BDNF at 30 days after NMDA injection. CONCLUSIONS Evidence of time-dependent morphological neuronal degeneration along the retinocollicular pathway from the retina to the SC was detected at 90 and 180 days, but not at 30 days, after NMDA-induced retinal damage. This neurodegeneration was preceded by an increase in BDNF expression in the SC, specifically at 30 and 90 days after NMDA injection. Hence, these findings may provide useful information concerning the pathological mechanisms of several disorders accompanied by retinal degeneration.
منابع مشابه
Interaction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats
Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...
متن کاملThe Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat
Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...
متن کاملBrain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis
Objective(s): In the present study, C57BL/6 female mice (n=56) were used to explore the neuroprotective effects of riboflavin in motor disability of experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis. Materials and Methods: The animals were assigned into 7 groups: sham-operated 1 (SO1), healthy mice receiving PBS (phosphate buffer saline); sham-operated 2 (SO2), h...
متن کاملEffect of Lithium on Brain-derived Neurotrophic Factor (BDNF) Level in Patients with Ischemic Stroke: A Clinical Trial
Background and Objectives: Previous studies have indicated that lithium may increase the level of the brain-derived neurotrophic factor (BDNF), which in turn improves the recovery of patients with stroke. In this controlled trial we evaluated the effect of lithium on BDNF serum level in patients with ischemic stroke. Methods: In this randomized controlled...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Vision
دوره 15 شماره
صفحات -
تاریخ انتشار 2009